

How To...Guide

version 1.00

for firmware 06020118 / software 1.08

January 3, 2021

Contents

1	Introduction	1
2	Configure and control. How to	2
2.1	Change the active parameter page without adjusting the offset values	2
2.2	Adjust page offset values without changing the active parameter page	2
2.3	Set the 5 fast-access patches loaded at power-on	2
2.4	Save a set of 5 fast-access patches	2
2.5	Initialise patch settings	2
2.6	Copy patch settings	2
2.7	Control using a PC	3
2.8	Update the firmware	3
2.9	Make an LFO sync to clock	4
2.10	Reset LFO on MIDI start	4
2.11	Setup the source of modulators M1–M4	4
2.12	Control playing style for note-off events	4
2.13	Play multiple units together polyphonically	5
2.14	Using external CV/gate	5
2.15	Edit page parameters such as EG attack using rotary knobs	6
2.16	Paraphonic playing	6
2.17	Use the arpeggiator without an external keyboard	7
2.18	Setup custom tunings	7
2.19	Live tweaking: modify any patch parameter using MIDI CCs or rotary knobs	7
3	Sound design. How to	9
3.1	Set bipolar or unipolar modulation	9
3.2	Make an oscillator have fixed pitch	9
3.3	Create a drone patch	9
3.4	Create a band-pass filter	9

3.5	Use phase modulation to create complex waveforms	0
3.6	Create wave-folding sounds	0
3.7	Set LFOs to track pitch for AM- and FM-type sounds	1
3.8	Control gain-staging and distortion	1
3.9	Change the EG response shape	2
3.10	Use oscillator sync to create complex waveforms	2
3.11	'Play' a resonant filter	2
3.12	Modulate a local LFO frequency with a global LFO or EG	2
3.13	Feedback audio / process external audio	3
3.14	Design and use custom LFO waveforms	3

1 Introduction

The **MOTAS-6** synthesizer is a very powerful and complex instrument and so it takes time to fully appreciate and understand all the capabilities and possibilities. It is hoped that this guide, in conjunction with the main User Guide, makes this process a little faster and easier, as well as perhaps revealing some capabilities or techniques that you weren't aware of.

This How to... guide is intended to suppliment the main User Guide. Whereas the main User Guide works through each of the features in order, this guide takes an alternative approach where we ask 'How to...' and then explain how to setup or use the features/settings to achieve the goal.

We suggest that you also read the appropriate section(s) in the main User Guide. If further guidance is needed please email support@motas-synth.uk

For the latest news, firmware and document updates please visit www.motas-synth.uk.

Whilst every effort has been made to ensure that this guide is as accurate as possible Motas Electronics Limited will not be liable for any erroneous information. This manual may be updated at any time without prior notice. Please check the website for updates.

This guide or any portion of it may not be reproduced in any form without the manufacturer's express consent.

2 Configure and control. How to...

2.1 Change the active parameter page without adjusting the offset values

Engage the 'value lock' feature (VALUE LOCK to prevent the offset parameter from changing and then turn the O rotary knob corresponding to the new parameter page you want to access.

Another approach is to turn the \bigcirc rotary knob to access the new page and then turn the \bigcirc rotary knob back to restore the setting, however it can be hard to set the value exactly back as original which may be important e.g. when accessing the oscillator pitch control pages.

2.2 Adjust page offset values without changing the active parameter page

Engage the 'page lock' feature PAGE LOCK to prevent the active page from changing. This can be useful when you are busy setting the modulation settings on a page but you find that other pages need their offsets tweaking (such as filter cutoff, or signal levels) but you don't want to leave the current page. Another use case is when wanting to study the oscilloscope or spectrum analyser whilst adjusting settings.

2.3 Set the 5 fast-access patches loaded at power-on

Pressing b 1, b 2, b 3, b 4 or b 5 normally switches between 5 fast-access patches. To set these patches first load in the desired patches into each of the slots and/or edit the patch settings in each slot. Then press b 5AVE and choose the 5AVE 5TARTUP option. This will save the current 5 patches in the fast-access slots to be restored at next power-on.

2.4 Save a set of 5 fast-access patches

You may want this set of 5 patches for a live performance to be able to quickly switch between patches, or as a set for use with the vector morphing feature, or as a set for use with the arpeggiator set to cycle through patches.

First load in the desired patches into each of the 5 fastaccess slots and/or edit the patch settings in each slot. Then press in SEQUENCE and then press in EAVE to save into one of the 16 slots (2 banks of 8 sequences). Saving as a 'sequence' allows saving of the set of 5 patches together, even if the sequence data is empty or not used.

2.5 Initialise patch settings

When on a patch parameter page press (1) **COPY** to enter the copy/reset/randomise page. Then press (1) to initialise (reset) the current patch to default settings. The patch parameter mappings and other settings (under the setup pages) are also reset to default values.

To reset the patch parameters only on the current page press $\oint -$.

COPY
SELECT COPY
DESTINATION
RESET
+ PAGE + PATCH
RANDOMISE DEPTH OFF
+ PAGE + PATCH

2.6 Copy patch settings

When on a patch parameter page press 👆 🗖 שודע to enter the copy/reset/randomise page.

Copy entire patch

Press the new patch preset destination 🖑 🗊 – 🖑 🖪 to copy the patch settings over to the new fast-access preset destination.

Copy modulation settings to all pages

To copy the MIDI/CV modulations setting for that modulation source from the current page to *all* parameter pages press (NOTE , (VELOCITY (M1 (M2 (M3 or 👆 M4. The copy operation replicates the amount, secondary amount, secondary destination and unipolar mode to all pages.

A fast way to zero a modulation on all pages is to set the values to zero and then do a copy-to-all pages operation

Copy global LFO settings to all pages

To copy the chosen global LFOx and the LFOx modulation amount to *all* pages from the current page press $\frac{1}{2}$ for LFOx.

Copy local LFO settings to all pages

Press in an in the local LFO to copy the corresponding values to *all* pages from the current page. To copy the local LFO modulation amount and other LFO settings (e.g. single-shot mode, pitch track etc.) to *all* pages from the current page press in the current page press.

Copy EG settings to all pages

2.7 Control using a PC

Free software MotasEdit for controlling **MOTAS-6** is available from www.motas-synth.uk/downloads.html. This software is available as a standalone executable and as a plug-in version for use with 3rd party DAW software.

For best results always use a USB connection as the data transfer is faster than using MIDI DIN connectors.

The MotasEdit software allows you to apply firmware updates (see 2.8), control **MOTAS – 6** patch settings, archive (load and save) patch, pattern and sequence settings, live screenshots and more.

To send (i.e. control) **NOTAS-6** patch settings from the computer MIDI NRPN messages are used. For firmware updating, archiving of data, live screenshots and other functions SysEx data is used. Normally you would set NRPN+SYSEX for both USB IN and USB OUT to allow full bi-directional functionality on SETUP PAGE 14. If you are using MIDI DIN connections then you would need to set the MIDI IN and MIDI OUT settings appropriately.

NRPN	/	SYSEX	7	THRU
MIDI	IR			OFF
MIDI	00	T		OFF
USB	IN	N	RΡ	N+SYSEX
USB	оцт			SYSEX
		SETL	IP	PAGE 14

Set the MIDI **CHANNEL** to match that set in the MotasEdit (or set to **ANY** where data will be sent on channel 1 and received on any channel).

MIDI SETT	INGS	
MODE Channel Low Note High Note	C-2 C-2 GB GB	
	SETUP PAGE	5

2.8 Update the firmware

Updated firmware for **MOTAS – 6** may be released from time to time to make improvements and add new features. These are available from www.motas-synth.uk/downloads.html.

The update file (MotasFirmware_vXXXXXXX.mbin) contains the new binary firmware for **MOTRS-6**.

Use the MotasEdit software (see 2.7 for details) to apply the update to Motas-6. The firmware update is sent to **MOTAS-6** using MIDI system exclusive (SysEx). Ideally you should connect Motas-6 to your PC using USB. MIDI DIN connectors can be used but this interface is much slower.

You must ensure that your **MOTAS-6** is set so that **ALLOW UPDATES** is set to **YES** to allow the firmware updating process, on **SETUP PAGE 15**.

It is possible to apply an older firmware version but this is not recommended especially since newer serial number **NOTRS-6** units may not function correctly with older firmware. It is recommended to always update to the latest firmware available.

2.9 Make an LFO sync to clock

Only the 4 global LFOs can be synced to MIDI clock. First ensure that the LFO **PITCH TRACK** is set to **OFF**

LPF-1;FREQ	
GLOBAL LFO LFO CHOICE SINGLE-SHOT SYNC∕RESET PITCH TRACK	GLOBAL1 OFF OFF DFF

then edit the frequency of the LFO down all the way to zero (using the rotary encoder O and/or \bigcirc) and then turn the rotary encoder O anti-clockwise to further reduce the value until the tempo-sync options are shown. When set to synchronise to the clock the display will show a metronome indicator and the LFO period value (down to as fast as 32 triplet). The icon displayed is \Box in this mode.

Now set the CLK SOURCE to EXT MIDI, EXT CLK or INTERNAL to choose external MIDI clock, external CV/gate or internal clock.

PATCH SET	TINGS 2	
	PATCH	5LOBAL
LFO SYNC		OFF
PRESS +/	- TO ED Setup I	IT LFO Page 2

2.10 Reset LFO on MIDI start

Set **LFO SYNC SEO** to **ON** so that the LFOs are synchronised (reset) when the sequence or pattern is rewound to the start, play started or a MIDI START real-time message is received. This feature is useful when controlling **MOTAS-6** from an external sequencer and you want the LFOs to be synchronised with the track.

PAT(ЭН	SET	TINGS	2	
				GLO	BAL
LFO	SY	NC			ON
PRES	55	+⁄-	EDIT Setur	LFO P PAG	E 2

2.11 Setup the source of modulators M1-M4

To setup the sources of the 4 global modulations M1–M4 that can be applied to each parameter page access **SETUP PAGE**. You can freely choose from many MIDI CC controllers, MIDI aftertouch, MIDI pitchbend, CV/gate signals, MIDI note value, MIDI velocity and even the output from the global LFOs and EGs.

You could setup 5 independent LFOs to modulate a single parameter page by assigning global LFO2, LFO3 and LFO4 to global modulators M1, M2 and M3. These, together with the page global LFO set to LFO1 and the page-local LFO gives a total of 5 simultaneous independent LFO signals! A similar trick can allow 5 independent EGs to modulate a single parameter page.

MODULATO	RS	
MODE	PATCH	GLOBAL
M1		001
M2		счэ
MЭ		LF04
144		EG2
	SETUP	PAGE 6

2.12 Control playing style for note-off events

On the **SETUP PAGE 1** you can set the **TRACK NOTE-OFF** modes. Sometimes you may want the oscillators to update pitch after note-off events when multiple notes are held, depending on your playing style. If you hold a note down and play another note on and off then with **TRACK NOTE-OFF** set to **FITCH** then the pitch will jump to match the note helddown (which note depends also on the individual oscillator note-tracking options), otherwise it won't respond to the note-off event.

In mode **P+EG**, additionally the EGs can re-trigger on the note-off event, although this also depends on the EG **GATE/TRIG** setting too (set to **EVERY** to ensure always re-triggers, for example).

2.13 Play multiple units together polyphonically

Multiple **MOTAS – 6** units can be operated so that they play together as a polyphonic synthesizer. Up to 16 units can be operated together in this way. In this mode called 'polychain' each new note is played by the next unit in the chain (and if the end of the chain is reached then starting again from the beginning of the chain). This is sometimes called 'round-robin' voice assignment and allows true polyphonic playing (unlike the simpler note-stealing method).

Each unit should be assigned a unique number in the chain and every unit in the chain needs to be set with the total number of units in the chain for this to work in the normal way. Of course, if you want things to behavely differently you do not have to adhere to this rule!

The 'polychain' algorithm runs independently on each of the separate **MOTRS-6** units and so in fact it is not required that the units are daisy-chained to each other. However, this is the easiest way to set things up and allows editing of patch parameters on the first unit in the chain to be transfered automatically to the other units along the chain to maintain the 'polysynth' operation.

The normal setup of 'polychain' would have the first unit

in the chain connected to an external MIDI controller (or computer) via USB or MIDI DIN to receive the played notes. This first unit needs to forward the MIDI controller data to the second unit and so its **MIDI OUT** should be set to **THRU+RLL** so that the MIDI controller data (note on/off etc) will be merged with the internal controller data (to allow patch editing) and sent to the next in the chain.

All the units need to operating on the same MIDI channel and so the easiest way is to set **CHANNEL** to **ANY** for all of the units.

MIDI SETT	INGS	
MODE Channel Low Note High Note	PATCH ANY C-2 GB	GLOBAL Any C-2 GB
	SETUP	PAGE 5

The remaining units in the chain need be connected to the previous unit in the chain with a MIDI DIN cable and to have **MIDI IIN** set to **NREN** or **NREN+SYSEX** (to allow patch editing data from the first unit) and **MIDI OUT** set to **THRU** to simply forward the data from the first unit only. The last unit in the chain, of course, does not have to **MIDI OUT** set at all.

NRPN	1	SYSEX	/ THRU	
MIDI	IN		OF	
MIDI	οu	Т	OF	7
USB	ΙN	N	RPN+SYSE	Х
USB	οцτ		SYSE	X
		SETU	P PAGE 1	4

Finally, of course, all of the audio outputs from each **NOTRS – 6** need to be mixed together using an external audio mixer.

2.14 Using external CV/gate

Normally **MOTAS – 6** is played and controlled using MIDI but external analogue CV (control voltage) signals can be used too. There are 4 external CV/gate inputs and each input can be assigned to a number of roles. The offset and gain can be independently adjusted for each input for compatibility with a wide range of external equipment.

Set the mode to **CUPITCH** to allow the CV signal to control the basic pitch of **MOTRS-6**. This will override

the MIDI note control of pitch, and will bypass any tuning setup.

To trigger the EGs using CV/gate inputs set the mode to **GATEH** or **GATEH** to trigger on rising or falling voltage, respectively. The trigger point threshold is adjusted by setting the offset for that CV input.

CV/gate can also control the tempo when set to CLOCK+ or CLOCK-, in this case the CLK SOURCE should be set to EXT CLK on SETUP PAGE 3.

The **CU_SMOOTHING** parameter applies a low-pass filter to the CV/gate signals which smoothes out and delays the response to input CV (except when used for gate or clock signals). This can be useful to filter out noise or to add a delayed effect. When set to **OO** there is no smoothing.

C YZ	'GA	TE	MODE:	5		
	1	сч	PITC	Н		
IR	2	VEL	OCIT	Y		
IR	Э	CLO	CK+			
IN	4	GAT	E+			
C U ·	+ M	IDI	OFF			
сų	SM	ООТ	HING	0	0	
			SET	UP.	PAGE	9

To set the offset and gain for each input access **SETUP PAGE 10**

C YZ	'GAT I	E ADJUST	MENT
		OFFSET	SCALE
IN	1	1.200	1.000
IN	2	0.000	1.000
IN	э	0.000	1.000
IN	4	0.000	1.000
		SETUP	PAGE 10

2.15 Edit page parameters such as EG attack using rotary knobs

Whilst on a parameter page engage i PAGE LOCK and VALUE LOCK. Now the rotary knobs i allow realtime editing for many of the parameters for that page. See the table below which shows what is controlled from each rotary knob. For example turning i LPF-1 will now control the EG attack.

This feature is useful for live editing of the page patch parameters, and for faster more immediate editing of the patch parameters using the 6 rotary knobs.

Rotary knob	Control function
✓ OSC-1	Note mod amount
	Velocity mod amount
Ó 🐼 050-1	M1 amount
Ó 🗖 050-1	M2 amount
	M3 amount
Ó 🔲 050-1	M4 amount
Ó 🗖 050-2	Note secondary amount
() рітсн 050-2	Velocity secondary amount
Ó 🐼 050-2	M1 secondary amount
Ó 🗖 050-2	M2 secondary amount
Ó 🔲 050-2	M3 secondary amount
SUB 050-2	M4 secondary amount
Ó 🗖 050-3	LFOx waveform
🌔 рітен 050-3	LFOx frequency/tempo
Ó 🐼 050-3	LFOx level
 ОSС-Э 	local LFO waveform
	local LFO frequency
🔨 🔳 05С-Э	local LFO level
	EG delay
C LPF-1	EG attack
LPF-1	EG decay
√○ Z LPF-1	EG sustain
	EG release
	EG level
LPF-2	EG shape
	Page offset
	global LFO1 frequency
	global LFO2 frequency
PHASE MOD 050-3	global LFO3 frequency
MIXER MIXER	global LFO4 frequency

2.16 Paraphonic playing

MOTAS – 6 is a paraphonic synthesizer. The 3 VCOs can separately be configured to track pitch independently, and EGs can be applied to control the mixing of the VCOs, but ultimately their outputs are all mixed together and pass through the filters and final output together. This is in contrast to a true polyphonic synthesizer where each

'voice' is fully independent all the way through to the final output.

There are many 'flavours' of paraphonic operation. The simplest and often most effective is to set each of the 3 VCOs to track incoming notes in modes **HIGHEST**, **MIDDLE** or **LORIEST** respectively. With this setup when one note is played all VCOs play the pitch of that note. When 2 notes are held 2 of the VCOs play the highest note and the 3rd plays the lowest. When 3 notes are held each VCO is set to a separate pitch. This allows easy playing of 3-note chords with the benefit of a rich sound on 1-note playing (as all 3 VCOs then combine).

For true polyphonic operations multiple **MOTRS-6** units can be operation together, see section 2.13.

2.17 Use the arpeggiator without an external keyboard

The arpeggiator has a mode that can play without triggering from an external source. Set **MODE** to **H-INT** which means 'hold-internal' then the notes played can be edited on page 3 of the arpeggiator setup.

ARPEGGIATOR				
SOURCE	PATCH	GLOBAL		
MODE		H-MIDI		
DIRN		UP		
PATTERN		16		
LEAP		OFF		
RANGE		2		
	ARPEG.	PAGE 1		

Either fixed chord formations can be chosen (12 types such as **MAJOR**, **MINOR**, **AUG**...) or custom-defined notes can be set. Up to 8 notes can be specified.

ARPEGGI	ATOR	INT	
CHORD		MAJOR	
NOTES		8	
1		5	
2		6	
Э		7	
4		8	
	ARF	PEG. PI	AGE 3

2.18 Setup custom tunings

A 'tuning' is the mapping between the played note and the resulting pitch (frequency). The tuning will be correct when no modulations are applied to the master pitch page and the individual VCO pitch pages and the offsets are set to zero semitones. If note modulation is applied then deviations will occur which can be useful way to detune according to note played. Note that the tunings are only used for MIDI playing of **MOTRS-6** – when using CV to control pitch there is no such mapping in operation (the pitch is directly controlled by the CV voltage).

You can choose from 32 built-in preset tunings and from a further 32 user-defined tunings that you import (via MIDI tuning commands). Make the selection from **SETUP PAGE 11**.

2.19 Live tweaking: modify any patch parameter using MIDI CCs or rotary knobs

All of the **MOTAS** – 6 parameters can be controlled using NRPN MIDI controller data but this can be fiddly to setup and use with some external hardware. The MotasEdit software does use NRPNs to control and read the parameters to allow full, bidirectional high-resolution control of all parameters.

A simpler method can be employed using standard MIDI CCs (continuous controllers) from CC #1 (modulation wheel) to CC #24 using a pameter mapping system. This mapping is necessary because there are far too many parameters in each **MOTAS** - 6 patch to allow full control from the limited number of CC controllers. The mapping system allows you to choose which patch parameters is assigned to which CC controller. This is accessed from **SETUP PAGE** .

> PARAMETER MAP Mode glob Slot Page osc-1:Pit Dest velocity dep Press + Send Map

> > SETUP PAGE

When the parameter map is **ON** CC control is active. You can set the parameter map to be **GLOBAL** meaning the same mapping is used for all patches or **PATCH** which is specific to each patch and saved within each patch. The table below show the mapping options. They are 2 settings needed for each mapping (the 'page' and the 'dest') allowing control of all patch settings (more than 1600 parameters!).

Global/Page/Patch	Global Destination	Page Destination	Patch Dest.
OFF	LFO1 WAVEFORM	OFFSET	PORT MODE
GLOBAL PARAMS	LFO1 FREQUENCY	PAGE OPTION 1	PORT TIME/RATE
MASTER PITCH	LFO1 TEMPO	PAGE OPTION 2	PORT VALUE
OSC-1:LEVEL	LFO1 SINGLE-SHOT	NOTE DEPTH	NOTE OFF TRACK
OSC-1:PITCH	LEO1 SYNC/RESET	NOTE 2ND DEST	PW SENS.
OSC-1:TRIANGLE	LEO1 PITCH TRACK	NOTE 2ND DEPTH	LEO SYNC
OSC-1:SAWTOOTH	LEO2 WAVEFORM	NOTE RESPONSE	2.05.110
		VEL 2ND DEST	
OSC-2:PHASE MOD	LEO2 SINGLE-SHOT	VEL 2ND DEPTH	
OSC-2:1 FI/FI	LEO2 SYNC/DESET		
	LFO3 FREQUEINCT		
OSC-2.SQUARE			
	LFO3 STINC/RESET		
OSC-3:LEVEL			
OSC-3:PITCH			
OSC-3:TRIANGLE	LF04 FREQUENCY	M3 DEPTH	
OSC-3:SAWTOOTH	LFU4 TEMPU	M3 2ND DEST	
OSC-3:PULSE MOD.	LFO4 SINGLE-SHOT	MI3 ZND DEPTH	
OSC-3:PULSE LEVEL	LFO4 SYNC/RESET	M3 RESPONSE	
MIXER:NOISE	LFO4 PITCH TRACK	M4 DEPTH	
MIXER:LEVEL	EG1 DELAY	M4 2ND DEST	
MIXER:FB/EXT	EG1 ATTACK	M4 2ND DEPTH	
LPF1:FREQUENCY	EG1 DECAY	M4 RESPONSE	
LPF1:RESONANCE	EG1 SUSTAIN	LFOX CHOICE	
LPF1:OUTPUT	EG1 RELEASE	LFOX DEPTH	
LPF2:FREQUENCY	EG1 KEYTRACK	LFO WAVEFORM	
LPF2:RESONANCE	EG1 RESET/LOOP	LFO FREQUENCY	
LPF2:OUTPUT	EG1 SHAPE	LFO DEPTH	
HPF:FREQUENCY	EG1 RESPONSE	LFO OUTPUT MODE	
HPF:OUTPUT	EG2 DELAY	LFO SINGLE-SHOT	
OUTPUT	EG2 ATTACK	LFO SYNC/RESET	
PATCH SETTINGS	EG2 DECAY	LFO PITCH TRACK	
	EG2 SUSTAIN	LFO FMOD LFOX	
	EG2 RELEASE	LFO FMOD EG	
	EG2 KEYTRACK	EG DELAY	
	EG2 RESET/LOOP	EG ATTACK	
	EG2 SHAPE	EG DECAY	
	EG2 RESPONSE	EG SUSTAIN	
	EG3 DELAY	EG RELEASE	
	EG3 ATTACK	EG DEPTH	
	EG3 DECAY	EG CHOICE	
	EG3 SUSTAIN	EG KEYTRACK	
	EG3 RELEASE	EG RESET/LOOP	
	EG3 KEYTRACK	EG SHAPE	
	EG3 RESET/LOOP	EG RESPONSE	
	EG3 SHAPE		
	EG3 RESPONSE		
	EG4 DELAY		
	EG4 ATTACK		
	EG4 DECAY		
	EG4 SUSTAIN		
	EG4 RELEASE		
	EG4 KEYTRACK		
	EG4 RESET/LOOP		
	FG4 SHAPE		
	EG4 RESPONSE		

·> 🔼 0SC-3	slot #13
	slot #14
🊫 💽 0SC-3	slot #15
🏷 🗾 ОЅС-Э	slot #16
	slot #17
🌔 🔲 ОЅС-Э	slot #18
MIXER	slot #19
C LPF-1	slot #20
CLPF-1	slot #21
✓ LPF-1	slot #22
	slot #23
	slot #24
MASTER PITCH	global LFO1 frequency
	global LFO2 frequency
PHASE MOD 050-3	global LFO3 frequency
MIXER MIXER	global LFO4 frequency

Rotary knob

OSC-1

✓ OSC-1

• OSC-1

PWM 0SC-1

✓ OSC-2

OSC-2

OSC-2

Control function

slot #1

slot #2

slot #3

slot #4

slot #5

slot #6

slot #7

slot #8

slot #9

slot #10

slot #11

slot #12

Use this feature to tweak patch parameters in a live situation. Set the parameter mapping to **FATCH** so the tweakable parameters are custom to each patch and then load the patch and enter patch summary display mode with both **PAGE LOCK** and **VALUE LOCK** enabled. Turn the rotary knobs ^(C) to tweak away!

When in patch summary display mode and both PAGE LOCK and VALUE LOCK are enabled then 24 of the rotary knobs O also control the mapping (in parallel with external CC controllers). The table below shows the knob functions.

3 Sound design. How to...

3.1 Set bipolar or unipolar modulation

The modulation sources EG, note, velocity and global modulators M1 ...M4 can all be set to modulate in either unipolar or bipolar mode (independent settings for each source on each parameter page). Bipolar means that when the modulation source is at its mid-value the modulation effect will be zero whilst in unipolar mode the effect is zero when the source is also at its zero value. Typically (on traditional synths) EGs are always unipolar but with

ENVELOPE GENERATOR
EG CHOICE GLOBAL1
GATE/TRIG NOTE
RESET OFF
MODE GATED
SHAPE LOG 32
RESPONSE UNIPOLAR

The LFOs (global and local) are always bipolar.

3.2 Make an oscillator have fixed pitch

The VCOs normally track MIDI note-on values automatically. To hold the VCO so that its pitch is the same regardless of the incoming MIDI note simply apply a note modulation of -12 semitones (to cancel out the +12 semitones that is built-in).

3.3 Create a drone patch

To create a drone patch i.e. one where the audio is heard continuously, simply reduce the EG modulation level on the final output page to zero and offset the page value to 100% to give full output level. Also, you would need to set non-zero offset levels on other pages such as oscillator individual waveform pages, oscillator overall level page, mixer level page and filter output page (such as for low-pass filter 1) in order to hear something.

3.4 Create a band-pass filter

NOTAS – 6 has 3 independent filters: two low-pass and one high-pass. To make a bandpass filter a low-pass filter needs to be placed in series with the high-pass filter.

Let's use low-pass filter 1 with the high-pass filter. Set the input of the low-pass filter 1 to the mixer **MIX** and set the cut-off frequency to, say **2.00KHZ**.

LPF-1:FREQ	MIX +
MODULATIONS Not active	
1	2.00KHZ

Next, set the direct output level of low-pass filter 1 to zero (we don't want any of the direct output to be audible).

LPF-1:OUTPUT	POLE-2
MODULATIONS Not active	
1	07

Next set the input of the high-pass filter to the 2nd pole of the low-pass filter 1 output **POLE = 2** and set the cutoff frequency to, say **1.00KHZ**.

HPF:FREQ	POLE-2+
MODULATIONS Not active	
1	→ - 1.00kHz

With this setup the audio from the mixer passes through a band-pass filter with fixed width and a centre frequency around 1.5kHz. Of course the frequencies of the low and high pass filters can be modulated (independently) to make the sound more interesting.

The high-pass filter can be set to receive its signal from a different pole of the low-pass filter 1 (the higher the pole the steeper the cut-off frequency), the low-pass filter 1 resonance could be adjusted and the signal level can be adjusted (to alter the gain-staging and so distortion effects)...all of these changes will alter the sonic effect.

3.5 Use phase modulation to create complex waveforms

MOTRS-6 is rather unique for an analogue synthesizer in having phase-modulation capabilities. Phase modulation (PM) is when the waveform of an oscillator (the carrier) is shifted in phase a controllable amount from another oscillator waveform (the modulator).

Phase-modulation gives rise to sounds similar to frequency modulation (FM) but does not have the frequency shift problems that can plague true FM. This is because with FM the frequency of the output signal is affected by *the value* of the modulating signal whereas with PM the frequency shift is from the *rate-of-change* of the modulator signal. Using FM it is very hard to generate modulator wavefoms that do not cause the side-effect of uncontrolled frequency changes, especially with analogue VCOs and strong modulation amounts.

The 'FM' digital synths of the 1980s actually used phase-modulation (PM) but it was marketed as FM...

The VCO2 core sawtooth waveform can be phase-modulated

from the VCO1 triangle wave. The modulated result is the sawtooth output from VCO2. Internally the triangle waveform from VCO2 is generated from this new sawtooth and so is affected by the PM. The square and sub waveforms are generated from the original core sawtooth and so are not affected by the PM on VCO2.

The VCO3 core sawtooth waveform can be phase-modulated from either the VCO1 or VCO2 triangle wave. The modulated result is the sawtooth output from VCO3. Internally the triangle and pulse waveforms from VCO2 are generated from this new sawtooth and so both are affected by the PM.

In the screenshot below (captured from the built-in oscilloscope feature) we have VCO3 sawtooth output with phase modulation from VCO2. Both VCOs have been set to the same frequency (with VCO2 set to hard-sync to VCO3 to ensure constant lock). As you can see the waveform is significantly altered from a pure sawtooth.

In the screenshot below we have the same setup as above but additionally add phase modulation of VCO2 from VCO1 creating a more complex waveshape.

3.6 Create wave-folding sounds

It is possible to create wave-folding type effects using a special setup of the phase-modulation.

To achieve this we set the carrier frequency out-of-range of hearing (either **INFRASONIC** or **ULTRASONIC**). Then, with phase modulation the triangle wave output shape will, with some combination of settings, effectively be wavefolded onto itself.

In the screenshot below (captured from the built-in oscilloscope feature) you can see that the triangle wave output of VCO3 has 'folded' back onto itself at the tops of the cycle giving a characteristic tone. In this example the filters have been bypassed.

3.7 Set LFOs to track pitch for AM- and FM-type sounds

Normally the LFOs frequency is free-running but setting the **PITCH TRACK** setting to **NOTE** or **PITCH** causes the LFO frequency to track with the played note. In this case the LFO frequency is not displayed in Hz but in semitones or cents offset from the played note. In **NOTE** mode the LFO will track the last played note including pitch bend and global tuning and offset, whilst in **PITCH** mode additionally the tracking will be from the result of the **MASTER PITCH** page.

MIXER:FB/EXTERNAL		
LOCAL LFO		
OUTPUT MODE	NORMAL	
SINGLE-SHOT	OFF	
SYNC/RESET	OFF	
PITCH TRACK	PITCH	
FREQ MOD LFOX	00	
FREQ MOD EG	00	

Use pitch-tracking to apply a range of AM and FM effects (depending where the LFO is appled). Offset the pitch-tracking frequency to give characteristic noisy/complex tones. Since the LFOs cannot run at high audio rates (due to hardware limitations) digital aliasing artifacts will be heard when at higher frequencies, especially if the LFO waveform is not a sine wave.

3.8 Control gain-staging and distortion

There are several audio gain controlling stages in the audio signal path. There is the mix of the individual oscillator waveforms, the overall oscillator levels, the mixer level (including boost option) and the individual filter output levels. Also the resonance control on the low-pass filters is relevant (since resonance is a local feeback path), as well as the possibility to use the external input/feedback path. Finally there are the clipping options on the final output stage.

MIXER:FB/EXTERNAL	
MODULATIONS Not active	→
1	65%

NOTAS – 6 has been designed so that at higher levels the audio signals will overdrive/compress/limit/clip within the internal analogue circuitry producing new harmonics from non-linear circuit operation in many places. The effect will be different depending on where the higher levels are present within the circuitry. This intentional design allows a greater range of possible sounds which vary with the various signal levels in the signal path. Use of filter resonance and feedback also plays a part by modifying the signal levels. Use lower-levels for a clean sound, high levels for a grungy aggresive sound and intermediate levels for effects inbetween. The filters will distort differently due to the different designs of the circuits.

Using multiple oscillators at almost the same frequency, with appropriate level settings, can give an interesting change of tone as the oscillators drift in- and out-of phase. At some times the oscillators add together (when in-phase) and then distortion is strongest. At other times, when not in-phase, the overall signal is weaker and so the distortion is reduced or absent.

The subtle (or not subtle) effects of distortion are one of the key sonic attractions of true analogue synthesizers such as **MOTAS-6**.

3.9 Change the EG response shape

Each EG (Envelope Generator) has an output signal that varies over time during the attack, decay and release phases. The way this signal varies with time can be varied over a wide range using the shape parameter from -64 to +64. With positive shape values (LOCF) the signal changes more quickly at the start and then more slowly, conversely with negative shape values (EXF) the signal changes more slowly at the start and then more quickly. Adjusting this parameter is particularly useful to get exactly the 'right' response for percussive sounds where small changes in the shape can make a big difference to the sound effect.

MIXER:FB/EXTERNAL			
ENVELOPE G	ENERATOR		
EG CHOICE	LOCAL		
GATE/TRIG	NOTE		
RESET	OFF		
MODE	GATED		
SHAPE	LOG	24	
RESPONSE	BIPOLAR		

3.10 Use oscillator sync to create complex waveforms

MOTRS – 6 has hard oscillator syncronisation features on oscillators 1 and 2. This means that the oscillator core can be reset by another oscillator (or oscillators). The synced oscillator re-starts its waveform cycle at the point in time when the other oscillator re-starts. The effect depends on the relationship between the frequencies of the oscillators.

The waveform below shows the triangle wave output of oscillator 1 which is synced to oscillator 2. The frequency of oscillator 2 is set to 7 semitones lower than oscillator 1. As you can see the triangle waveform is distorted as the oscillator signal resets partway through the cycle.

In a more complex example the waveform below shows the triangle wave output of oscillator 1 which is synced to oscillators 2 and 3. The frequency of oscillator 2 is set to 7 semitones lower than oscillator 1 whilst the frequency of oscillator 3 is set to 9 semitones lower. The triangle waveform is distorted with 2 resets during its cycle.

3.11 'Play' a resonant filter

The 2 low-pass filters can both be 'played' like oscillators using high resonance settings. Set the filter cut-off frequency to track note with 1.00 octave. Set the resonance above 70%.

Note that the self-oscillation dies off at lower frequencies especially for low-pass filter 2. With low-pass filter 1 set the resonance feedback setting to **FOLE-4** or **FOLE-5**. The pitch will be lower in the **FOLE-5** setting and will extend to lower frequency operation. Note also that the pitch stability of the filters is not as precise as that for the oscillators.

3.12 Modulate a local LFO frequency with a global LFO or EG

Set the **FREQ MOD LFOX** parameter to allow the frequency of a local LFO to be modulated by the global

LFO used on that page and/or set the **FREQ MOD EG** parameter to allow the frequency to be modulated by the EG used on that page. Note that the global lfo or EG modulation amount settings for the page are irrelevant here and could be zero.

HPF:OUTPUT					
LOCAL LFO					
OUTPUT MODE	NORMAL				
SINGLE-SHOT	OFF				
SYNC/RESET	OFF				
PITCH TRACK	OFF				
FREQ MOD LFOX	45%				
FREQ MOD EG	0%				

Another way to achieve this is (or in parallel to the above!) is to assign a global LFO or global EG to one of the global modulators M1 ...M4 and then set a secondary modulation amount to modulate the local LFO frequency.

Adjust the local LFO frequency as normal to set the 'offset' of the local LFO about which the modulation takes place.

3.13 Feedback audio / process external audio

To process the output of **NOTAS** – **G** in a feedback loop ensure that nothing is plugged into the external audio input **G**. When nothing is connected an internal loopback connection is made from the main output (before the final volume control). Alternatively, to process external audio plug in a line-level audio signal into **G**.

Adjust the level on the 🌾 ዙ

MIXER FB/**EXTERNAL** parameter page. The feedback or external audio signal enters the mixer along with the VCOs and the noise source. Since this is a feedback loop if the gain around the loop becomes greater than 1 and is inphase the output will potentially scream/howl so use with caution, or to good effect!

MIXER:FB/EXTERNAL	
MODULATIONS Not active	÷
1	65%

Of course modulation can be applied to this page (just like all the other pages) so you could create an effect where the external sound is only processed for a certain time on each key press by modulating with an EG, for example.

3.14 Design and use custom LFO waveforms

Each patch has 4 custom LFO waveforms which can be edited. Access SETUP PAGE 2 and then press 🖑 🔂 or

Any LFO (parameter-page local, or global) can use the 4 custom LFO waveforms just like the preset waveforms.

How To...Guide v1.00

Set an LFO into **SINGLE-SHOT** mode using a custom LFO waveform with a complex profile to use the LFO more like an 'EG' on a percussive patch with exact and complex control of the shape over time. Use the LFO frequency to control how 'fast' the waveform changes over time.